Ergodicity of Two Hard Balls in Integrable Polygons

نویسندگان

  • PÉTER BÁLINT
  • SERGE TROUBETZKOY
چکیده

We prove the hyperbolicity, ergodicity and thus the Bernoulli property of two hard balls in one of the following four polygons: the square, the equilateral triangle, the 45 − 45 − 90◦ triangle or the 30− 60− 90◦ triangle.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ergodicity of Hard Spheres in a Box

We prove that the system of two hard balls in a ν-dimensional (ν ≥ 2) rectangular box is ergodic and, therefore, actually it is a Bernoulli flow.

متن کامل

The Boltzmann-Sinai ergodic hypothesis in two dimensions (without exceptional models

We consider the system of N (≥ 2) elastically colliding hard balls of masses m1, . . . , mN and radius r in the flat unit torus T , ν ≥ 2. In the case ν = 2 we prove (the full hyperbolicity and) the ergodicity of such systems for every selection (m1, . . . , mN ; r) of the external geometric parameters, without exceptional values. In higher dimensions, for hard ball systems in T (ν ≥ 3), we pro...

متن کامل

Ball Systems

We consider the system of N (≥ 2) hard balls with masses m1, . . . , mN and radius r in the flat torus TL = R /L · Z of size L, ν ≥ 3. We prove the ergodicity (actually, the Bernoulli mixing property) of such systems for almost every selection (m1, . . . , mN ; L) of the outer geometric parameters. This theorem complements my earlier result that proved the same, almost sure ergodicity for the c...

متن کامل

The Boltzmann-Sinai Ergodic Hypothesis for Hard Ball Systems

We consider the system of N (≥ 2) elastically colliding hard balls with masses m1, . . . ,mN moving uniformly in the flat unit torus T , ν ≥ 3. It is proved here that the arising billiard flow possesses the K-mixing property for almost every distribution of the masses m1, . . . ,mN .

متن کامل

for Typical Hard Ball Systems

We consider the system of N (≥ 2) hard balls with masses m1, . . . , mN and radius r in the flat torus TL = R /L · Z of size L, ν ≥ 3. We prove the ergodicity (actually, the Bernoulli mixing property) of such systems for almost every selection (m1, . . . , mN ; L) of the outer geometric parameters. This theorem complements my earlier result that proved the same, almost sure ergodicity for the c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003